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Abstract— This article discusses the impact of substituting some 
of the basic speech features with the voiced/ unvoiced information 
and possibly with the estimated pitch value. 

As a good measure of the signal’s voicing the average magnitude 
difference function was assumed, especially the ratio of its 
average value to its local minima found within the accepted 
ranges of the pitch. Furthermore, the pitch itself was used as an 
auxiliary feature to the base MFCC and PLP features. 
Experiments were performed on the professional database 
SPEECHDAT-SK for mobile applications working in harsh 
conditions, using various HMM models of context dependent and 
independent phonemes. All models were trained following the 
MASPER training scheme. 

In all cases the voicing feature brought improved results by more 
than 9% compared to the base systems. However the role of the 
pitch itself in the case of speaker independent ASR system 
evaluated over different tasks was not always so beneficial. 

Keywords-speech recognition; speech features; HMM; AMDF 
MFC; PLP, MASPER 

I.  INTRODUCTION 

There has been an immense research effort spent over 
several decades in order to realize any practical recognition 
system. Currently, automated dialog or even dictation systems 
are emerging in more or less limited way. However, there is 
still lot of to do to realize fully automatic transcription of 
natural conversation, as the practical systems should be robust, 
accurate, speaker independent, must support vocabulary sizes 
of several hundreds of thousand of words in the real time, etc. 

These strict requirements can be met by the statistical 
speech modeling using HMM models of tied context dependent 
(CD) phonemes with multiple Gaussian mixtures [1]. 
Nowadays the classical concept has evolved into areas like: 
hybrid solutions with neural networks, different than ML or 
MAP training strategies, explicit time duration modeling, etc. 

Beside the modeling problem, another vital issue of the 
recognition process is the feature extraction method (speech 
representation). This matter is not fully solved and various 
features have evolved during several decades, but the most 
successful ones in connection with HMM are MFCC and PLP. 
However, some other base features are also reported to be 

beneficial and are being able to outperform the previously 
mentioned ones, but these are usually closely attached to the 
certain environments. 

Apart of the base static futures that aim to estimate 
magnitude-modified and frequency-warped spectra, dynamic 
features reflecting time evolution, like delta and acceleration 
coefficients proved to be rather valuable as well. As a 
consequence those static parameters eliminate the voicing 
information which carries some discrimination information, 
that play role in the recognition accuracy. Namely, this 
information is vital do discriminate some pairs of voiced and 
unvoiced consonants like: z in the word zero and s as appears 
in the word sympathy, p and b, d and t, etc. To elevate this 
drawback we substituted the least significant static features 
with such kind of information derived from the average 
magnitude difference function (AMDF). To test this concept 
further the pitch was included in separate experiments as well. 
In order to verify and asses the merit of such a modification, 
series of experiments were executed using the professional 
database and a training scheme for building robust HMM 
models for practical automatic speech recognition (ASR) 
systems. 

The remaining article is organized as follows. First the base 
speech features represented by MFCC and PLP are introduced 
in brief. Then the process of extracting proper voice and pitch 
information based on the AMDF function is outlined, which 
will be followed by the detailed description of the testing 
conditions involved in the whole series of experiments ranging 
from the training database, training scheme and executed 
experiments. Finally, the article is concluded by commented 
results. 

II. SPEECH FEATURE FOR ASR SYSTEMS 

One of the first steps in any ASR system is to convert the 
incoming speech into proper features that would highlight the 
lexical information contained in it and suppress all adversary 
artifacts that would prevent us from estimating them. At the 
beginning it should be noted that this task is not yet completely 
solved and a lot of effort is still going on in this area. The aim 
is to simulate the auditory system of humans, mathematically 
describe it, and simplify for practical usage. 



A good feature should be sensitive to differences in sounds 
that are perceived as different in humans and should be “deaf” 
to those which are unheeded by our auditory system. For 
example the location of formants in the spectra and their widths 
are important for sound discrimination. On the other hand, 
following aspects are not vital in perceiving differences: overall 
tilt of the spectra, frequencies located under the first and above 
the 3rd format frequency, narrow band stop filtering, etc. 

Furthermore, features should be insensitive to additive and 
convolutional noises or at least they should represent them in 
such a way that these distortions are easy to locate and suppress 
in the feature space. Finally, when using continuous density 
HMM models it is required for the feasibility purposes that the 
elements of feature vectors should be linearly independent so 
that a single diagonal covariance matrix can be used. 

Many basic speech features have been designed so far, but 
currently MFCC and PLP [2] are the most widely used in 
CDHMM ASR systems. They both represent some kind of 
cepstra and thus are better in dealing with convolutional noises. 
Furthermore, the DCT transform applied in the last step of the 
computation process minimize the correlation between 
elements and thus justifies the usage of diagonal covariance 
matrices. Besides those static features it was soon discovered 
that the changes in the time represented by delta and 
acceleration parameters play an important role in modelling the 
evolution of the speech, which is somehow restricted using the 
first order Markov chain. Finally, to take the full advantage of 
cepstral coefficients, usually a cepstral mean subtraction or 
temporal filtering using RASTA-style filters are applied in 
order to suppress possible distortions inflicted by various 
transmission channels or recording devices and promote speech 
components at the modulation frequency. In the following let 
us recap in brief the steps in calculating MFCC and PLP 
feature. 

A. MFCC  

The speech signal is first modified by HP so-called 
preemphasis filter to suppress the LP character of the speech 
given by the lip radiation to the open space. Prior to the FFT 
computation a Hamming window is applied and the frequency 
in Hz is warped into the Mel scale to mimic the critical bands 
over different frequencies. Next, equally spaced triangular 
windows with 50% overlap are applied to simulate a filter 
bank. Finally a logarithm is taken and the DCT transform is 
applied that produce a static feature frame. The logarithm not 
only acts as a tool to produce cepstrum (real one) but suppress 
the high-vale intensity in favor for low intensities as the human 
auditory system does. In addition, zero cepstral coefficient is 
used as well to estimate the overall log energy. 

B. PLP 

The original process of PLP calculation follows these steps: 
calculation of FFT that is proceeded by Hamming windowing, 
frequency warping into Bark scale, smoothing the bark-scaled 
frequency spectra by a window simulating critical bands effect 
of our auditory system, sampling the smoothed bark spectrum 
in approx. 1 bark intervals to simulate the filter bank, equal 
loudness weighting of the sampled frequencies which 
approximates the hearing sensitivity, transformation of energies 

into loudness by powering each frequency magnitude to 0.33, 
calculating the LP coefficients from the warped and modified 
spectra (all pole model of the speech production), finally 
cepstral LP coefficients are derived from LPC as if the 
logarithm was taken and an inverse FFT calculated. 

To show some practical differences of these two features in 
the terms of recognition errors, in table 1 there are shown 
averaged WER for PLP and MFCC features as scored in the 
application words and digits string tests and the relative 
improvements achieved by subtracting zero mean, adding zero 
cepstral coefficient, delta and acceleration coefficients. 

TABLE I.  WER AND RELATIVE IMPROVEMENTS FOR MFCC, PLP AND 
THEIR AUXILIARY FEATURES AVERAGED OVER DIFERENT HMM FOR DIGIT 

STRINGS AND APPLICATION WORDS TESTS. 

Relative Improvements to WER  
Static 

WER [%]
Zero mean 
subtraction 

[%] 

C0 
[%] 

Delta 
[%] 

Acceleration 
[%] 

PLP 30.67 2.04 3.9 62.69 20.37 
MFCC 33.12 5,99 15.8 50.56 13.61 

 

As it can be seen the static features of PLP outperformed 
the MFCC counterparts by 7.9%. Adding another static 
coefficient C0 and applying zero mean subtraction is beneficial 
in all cases however it is more significant for MFCC. On the 
other hand, addition of dynamic coefficients was more relevant 
for PLP. These findings may suggest that PLP is bit better in 
describing static speech features for recognition purposes at 
least for the tested environment and settings that will be 
discussed later. 

III. AMDF AND THE VOICING FEATURE 

As it was already outlined the concept of incorporating 
some parameters assessing the voicing of a particular signal 
may bring additional discriminative information into the 
recognition process. For example in Slovak, one classification 
of consonants is according whether they exist in voiced / 
unvoiced pairs. In the paired group there are consonants 
grouped in pairs according to the mechanism how they are 
produced and perceived. In the paired group there is always an 
unvoiced consonant accompanying the voiced one. The only 
difference in their production is the absence of vocal chord 
activity that can not be observed after PLP or MFCC 
processing. Some typical pairs of voiced and unvoiced 
consonants are: p and b, d and t, k (king) and g (give), etc. As it 
can be seen, distinguishing between them may be crucial. On 
the other hand there are many cases (in Slovak) where in the 
real conversation the voiced one takes the form of unvoiced 
consonant and vice versa. 

There are more methods to asses the volume of voicing and 
to detect the periodicity ranging from simple algorithms in the 
time domain like AMDF, and autocorrelation, through spectral 
ones like harmonic spectra and real cepstrum to methods 
operating on the residual signal after the inverse filtering. The 
advantage and the reason why we opted for AMDF is a simple 
and fast implementation and good results even in lower SNRs. 
AMDF is defined as follows: 
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where s is a signal, N is block’s length and Tmin and Tmax are 
the minimal and maximal pitch periods. Then as a measure of 
voicing the minimal value of AMDF can be taken. To suppress 
its dependence upon magnifying constant, usually a ratio to its 
maximal or averaged value is computed as follows: 
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Thus perfectly periodic signals would produce infinity, 
whereas signals with no period would be close to 1, but still 
higher. Then the location of the minima can represent the 
estimated pitch; however certain precaution should be taken not 
to detect longer periods- usually integer multipliers of the real 
one. 

IV. EXPERIMENT SETTING 

In this paragraph basic settings of the experiments will be 
given for clarity. These are related to the used database, 
training process and models, and finally to the evaluation tests. 

A. Speech database: Mobildat-sk 

As both the training and recognition tasks are more 
challenging in the adverse environments the Slovak 
MOBILDAT database [3] was chosen. It was recorded over 
GSM networks and generally provides more difficult 
conditions. 

The MOBILDAT-SK database consists of 1100 speakers 
that are divided into the training set (880) and the testing set 
(220). Each speaker produced 50 recordings in a session with 
the total duration ranging between 4 to 8 minutes. These items 
were categorized into the following groups: isolated digit 
items, digit strings, yes/no questions, dates, times, application 
keywords, directory names, spellings, phonetically rich words, 
and phonetically rich sentences. Description files do not 
contain any time marks and beside the speech several non –  
speech events are labeled e.g.: truncated recordings, 
unintelligible speech, filed pauses, speaker noise, GSM specific 
distortion, etc. In total there are 15942 different Slovak words, 
260287 physical occurrences of words. Finally, there are 41739 
useable speech recordings in the training portion, containing 51 
Slovak phonemes, 10567 different CD phonemes (word 
internal) and in total there are slightly more than 88 hours of 
speech. 

B. Training process of HMMs 

The training process is based on MASPER [4] training 
scheme designed for building multilingual and cross lingual 
reference recognition systems. As its thorough description can 
be found elsewhere, here only the main features are listed. All 
phonemes are modeled with 3 state models following the Bakis 
structure and 4 non speech events are modeled too: short pause 

model (one state T model), background model (3 state, 
backward connection allowed), speaker generated noise and a 
hesitation model (both are 3 states with the Bakis structure). 
Recordings which contain damaged speech like: truncated, 
mispronounced or unintelligible words are completely removed 
from the training. There are 3 runs of the training, where the 
first two produce CI phonemes with 1 up to 32 mixtures. The 
first one uses a flat start initialization and an embedded 
training, and the second run of initialization and several cycles 
of the single model training operates on the time aligned 
recordings (multiple pronunciations are aligned too) utilizing 
the Viterbi training and CI models from the first stage. These 
are only applied to single mixture CI models and by doing so 
more accurate models are obtained than their counterparts from 
the first run. Next the single mixture CI phonemes from 2P

nd
P run 

are used to clone CD phonemes, which are further tied by the 
decision trees that were constructed using the phoneme 
classification file designed for Slovak language. Finally, tied 
CD phonemes are trained in cycles with gradually 
incrementing the number of mixtures from one to 32. In the 
following experiments both PLP and MFCC basic vectors with 
12 coefficients plus the C0 were used together with the delta 
and acceleration parameters (all together 39 elements). When 
the voicing ratio or pitch were used, they substituted the least 
significant basic features, i.e. they replaced 12P

th
P and 11P

th
P 

elements of PLP and MFCC vectors respectively as we 
believed the carry the least discrimination information (finest 
details of modified spectra). This was vital to make the 
comparison and assessment as objective as possible, so final 
vectors in all tests were of the same length of 39 elements. 

C. Evaluation tests 

Two basic tests were executed upon all models and the 
examined feature extraction methods, namely: MFCC and PLP 
both in combination with the voicing and pitch estimates. All 
experiments were accomplished on the test part of the 
MOBILDAT-SK database that amounts to 220 speakers. The 
two basic tests were: digits strings that can contain arbitrary 
number of digits in the string and the application words test 
that equals to the recognition of isolated words. Although the 
digits string test exhibits higher perplexity and therefore 
provides higher errors it uses only very limited set of CD 
phonemes. On the other hand, the application words test 
contains greater variety of words, CI and CD phonemes and 
therefore provided more objective insight about how good all 
the models were trained. 

V. RESULTS 

To asses the merits of incorporating voicing measure and 
the pitch into the recognition process, achieved results are 
related to the original ones (MFCC and PLP) via the relative 
improvement unit defined as follows: 

100
WER

WERWER
mprovementrelative_i

orig

modorig −=
. (3) 

Further it should be noted that the new features were not 
simply added to the original vector but instead they replaced its 



least significant elements (we believed according to the theory 
they were the last PLP and MFCC coefficients). This allowed 
us to maintain the same vector size and made the comparison 
more objective. 
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Figure 1.  Relative improvements for MFCC, various HMM models (CI and 
CD with 1 to 32 mixtures each) and application words test achieved by 

incorporating voicing and pitch measures. 
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Figure 2.  Relative improvements for PLP, various HMM models (CI and CD 
with 1 to 32 mixtures each) and application words test achieved by 

incorporating voicing and pitch measures. 

As the PLP and MFCC features performed in a slightly 
different way the results will be given separately for both 
features. Finally, to save up the space only results for the 
application words are further showed, as similar findings were 
observed in the case of digits strings, however due to the higher 
perplexity lower accuracies were achieved. 

In fig.1 there are depicted the relative improvements for 
MFCC achieved by introducing the voicing measure and the 
pitch feature in the case of application words test. The same 
results for PLP are shown in fig.2. In all the cases it is clear that 
better results were observed by the inclusion of suggested 

features, however the replacement of the least significant basic 
features is more relevant for MFCC where on average an 32% 
improvement was recorded whereas for PLP it was only 17%. 
Further, it is noticeable that the pitch was much more 
successful (black bars) in connection with MFCC features and 
that its incorporation tended to be more beneficial in the case of 
more complex models (with higher number of mixtures) for 
both PLP and MFCC parameters. 

 

VI. CONCLUSIONS 

Incorporating the voicing coefficient defined in equation 2 
and 3 that assess the level of similarity between possible 
periods of voiced signals turned out to be very effective, on 
average a 24.5% improvement was observed for MFCC and 
19.9% for PLP. This feature may provide necessary 
discriminative information between paired consonants (voiced 
and unvoiced, like: s and z, p and b, t and d, etc.). 

The inclusion of pitch itself by replacing the least 
significant PLP or MFCC elements was despite its dispersion 
beneficial in case of MFFC, where the improvement on 
average reached 32.9%, which means a further 9% 
improvement comparing to voicing alone. In the case of PLP 
opposite situation was recorded, the improvement on average 
reached only 17.6% which is actually a reduction by more than 
2% comparing it to the test with voicing feature alone. On the 
other hand the pitch was successful for more complex models 
even in the PLP case; however benefits were relatively minor 
comparing it to MFCC. This phenomenon can be explained by 
the better description capabilities of more complex models that 
are more equipped to cope with the wider spectra of possible 
pitch values. 

These results with voicing and pitch parameters are in line 
with those mentioned in table 1, where it was shown that PLP 
static features were better in representing the speech for 
recognition purposes in the tested settings. Here the 
replacement of the least significant features by voicing and 
pitch parameters was more relevant for MFCC extraction 
method in all cases. 
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