ABS Seminar no.4

T.1

Find AWGN channel capacity for infinite bandwidth. Hint: use the identity: $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e \text{ in terms of: } \frac{S}{N_0}$

T.2

Calculate the channel capacity if the received ratio: $E_b/N_0=7.5~dB$ and system bandwidth is: W=10~MHz, we assume that: $W=R_b$

T.3

Calculate the channel capacity if the received ratio: $E_s / N_0 = 11 \, dB$ and system bandwidth is: $W = 5 \, MHz$, and the system uses 64QAM modulation.

T.4

Consider AWGN channel with bandwidth W=40~MHz the total power of the received signal is: S=5mW and $N_0=2\times 10^{-9}~W/Hz$. Calculate:

- a) How to increase channel capacity if the received power doubles?
- b) How much the channel capacity is reduced if the bandwidth is doubled?
- c) Determine in which region the system works.

T.5

Consider a frequency non-selective channel with a bandwidth $W=15\ MHz$ and a constant transmission power that provides the average value of the received SNR = 0 dB. Fast fading occur in the channel, while the instantaneous gain of the channel acquires discrete values with probabilities:

- 1. $G_{CH1} = 20 dB$ with probability: $P_{CH1} = 0.1$
- 2. $G_{CH2} = 15 dB$ with probability: $P_{CH2} = 0.25$
- 3. $G_{CH3} = 10 dB$ with probability: $P_{CH3} = 0.15$
- 4. $G_{CH4} = 5 dB$ with probability: $P_{CH4} = 0.25$
- 5. $G_{CH5} = 0 dB$ with probability: $P_{CH5} = 0.15$
- 6. $G_{CH6} = -5 dB$ with probability: $P_{CH6} = 0.1$

 G_{CHi} ; $i=1,\cdots,6$ is the channel gain for the given time instance, P_{CHi} ; $i=1,\cdots,6$ is the probability of such event.

Find the average value of the channel capacity. Use the formulas:

$$C_{AWGN} = W \log_2 \left(1 + G_{CH} SNR \right) \qquad C_{ave} = \sum_i C_{AWGN \, i} P_{CH \, i}$$

G_{CH}	C_{AWGN} [Mb/s]	P_{CH}	$C_{AWGN}.P_{CH}$