

simplified model of the satellite system

S10

HPA - power amplifier

 P_{HPA} – output power HPA

 L_{bo} - back-off losses

 L_f - feeder loss

 L_b - losses due to signal distribution (in connectors, couplings, etc.)

 G_t - power gain of the transmitting antenna (the efficiency of the antenna is already included here)

 P_T - total power at the antenna input

 P_t - total radiated power

 L_u - additional atmospheric losses for UL

 G_r - power gain of the receiving antenna (the efficiency of the antenna is already included here)

 G/T_e - receiver sensitivity

 $L_{\rm s}$ - losses due to signal propagation over long distances

 L_d - additional atmospheric losses for DL

LNA – low noise amplifier

 C/T_e - ratio of signal power (carrier f.) to equivalent noise temperature

 C/N_0 - ratio of signal power (carrier f.) to noise PSD

 Eb/N_0 - ratio of signal energy per 1 bit to noise PSD

C/N - ratio of signal power (carrier f.) to noise power

S10 2

Antenna gain is the result of concentrating the isotropic RF flux source: B. Sklar, digital Communications

S10 3

The same value of EIRP produced two different ways

source: B. Sklar, digital Communications

Two Eb /N0 values of interest source: B. Sklar, digital Communications

\$10 4