simplified model of the satellite system S10 HPA - power amplifier P_{HPA} – output power HPA L_{bo} - back-off losses L_f - feeder loss L_b - losses due to signal distribution (in connectors, couplings, etc.) G_t - power gain of the transmitting antenna (the efficiency of the antenna is already included here) P_T - total power at the antenna input P_t - total radiated power L_u - additional atmospheric losses for UL G_r - power gain of the receiving antenna (the efficiency of the antenna is already included here) G/T_e - receiver sensitivity $L_{\rm s}$ - losses due to signal propagation over long distances L_d - additional atmospheric losses for DL *LNA* – low noise amplifier C/T_e - ratio of signal power (carrier f.) to equivalent noise temperature C/N_0 - ratio of signal power (carrier f.) to noise PSD Eb/N_0 - ratio of signal energy per 1 bit to noise PSD C/N - ratio of signal power (carrier f.) to noise power S10 2 Antenna gain is the result of concentrating the isotropic RF flux source: B. Sklar, digital Communications S10 3 The same value of EIRP produced two different ways source: B. Sklar, digital Communications Two Eb /N0 values of interest source: B. Sklar, digital Communications \$10 4